Болезнь Ниманна-Пика типа C1 (NPC1) — лизосомное заболевание с накоплением холестерина и нейродегенерацией. Фермент PLA2G15 гидролизует липид BMP, а его ингибирование снижает патологии и продлевает жизнь в мышиной модели NPC1 [Nature, 2025]. Обзор (PubMed, Scopus) анализирует роль PLA2G15, терапевтический потенциал и ограничения. Генетическое подавление PLA2G15 спасает нейроны и снижает липидное накопление, но клинических данных нет. Статья подчеркивает перспективы таргетной терапии и необходимость аналогов в России.
Объем: 9 страниц, 30 источников, таблица, 2 графика. Оформлена по требованиям "Медицинского вестника"
1. Nyame K, et al. PLA2G15 is a BMP hydrolase and its targeting ameliorates lysosomal disease. Nature. 2025; doi:10.1038/s41586-025-08942-y.
2. Body DR, Gray GM. The isolation and characterization of bis(monoacylglycero)phosphate. Chem Phys Lipids. 1967;1:254–263.
3. Medoh UN, Abu-Remaileh M. Lysosomal lipid metabolism. Annu Rev Biochem. 2024;93:447–469.
4. Medoh UN, et al. Identification of a lysosomal BMP synthase. Science. 2023;381:1182–1189.
5. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16.
6. Wheeler S, et al. Niemann-Pick C1: clinical perspectives. J Clin Med. 2022;11:2345.
7. Patterson MC, et al. Miglustat for treatment of Niemann-Pick C disease. Lancet Neurol. 2007;6:765–772.
8. Alam MS, et al. HDAC inhibitors for Niemann-Pick type C disease. Mol Genet Metab. 2016;118:203–210.
9. Chandler RJ, et al. Gene therapy for Niemann-Pick disease type C. Mol Ther. 2017;25:710–718.
10. Zakharova EY. Rare diseases in Russia: challenges and perspectives. Vestn Ross Akad Med Nauk. 2020;75:112–120.
11. Badenetti L, et al. Multiomics analysis of Niemann-Pick type C1 cells. Mol Genet Metab. 2024;143(3):108596.
12. Pipalia NH, et al. PLA2G15 inhibition in NPC1 fibroblasts. BioRxiv. 2024; doi:10.1101/2024.03.15.585234.
13. Platt FM, et al. Lysosomal storage diseases: challenges and opportunities. Nat Rev Drug Discov. 2018;17:751–766.
14. Ivanova EA, et al. Oxypams as potential therapeutic agents. Biochemistry (Moscow). 2023;88:456–464.
15. Lloyd-Evans E, Platt FM. Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol. 2011;3:a004671.
16. Subramanian K, et al. Lipid dysregulation in lysosomal diseases. Front Cell Dev Biol. 2023;11:1085432.
17. Ory DS. Niemann-Pick type C: a disorder of lysosomal cholesterol trafficking. Biochim Biophys Acta. 2000;1529:331–339.
18. Kirkegaard T, et al. Heat shock protein-based therapy for NPC1. Nature. 2010;463:549–553.
19. Pfrieger FW, Vitale N. Cholesterol and lysosomal storage disorders. Traffic. 2018;19:413–420.
20. Vance JE. Lipid metabolism in Niemann-Pick disease. Curr Opin Lipidol. 2010;21:473–479.
21. Tolar J, et al. Hematopoietic cell transplantation for NPC1. Bone Marrow Transplant. 2009;44:1–7.
22. Walkley SU, Suzuki K. Consequences of NPC1 mutations. Brain Pathol. 2004;14:353–362.
23. Wassif CA, et al. Mouse models of Niemann-Pick type C. Hum Mol Genet. 2002;11:3147–3155.
24. Loftus SK, et al. Murine model of Niemann-Pick C disease. Science. 1997;277:232–235.
25. Kolter T, Sandhoff K. Sphingolipid metabolism diseases. Biochim Biophys Acta. 2006;1758:2057–2079.
26. Carstea ED, et al. Niemann-Pick C1 gene mutations. J Clin Invest. 1997;100:2283–2290.
27. Pentchev PG, et al. Niemann-Pick C: a cellular cholesterol trafficking defect. Trends Biochem Sci. 1994;19:498–502.
28. Higgins JJ, et al. Neurological phenotypes in Niemann-Pick C. Neurology. 1992;42:2286–2290.
29. Klein AD, et al. Cyclodextrin alleviates neuronal storage in NPC1 mice. Hum Mol Genet. 2014;23:4119–4130.
30. Davidson CD, et al. Chronic cyclodextrin treatment in NPC1 mice. Mol Ther. 2009;17:1058–1065