Моделирование синтеза классификаторов на основе аффинитивного анализа данных»

Раздел
Программирование
Тип
Просмотров
322
Покупок
0
Антиплагиат
Не указан
Размещена
6 Ноя 2021 в 12:51
ВУЗ
тгу
Курс
Не указан
Стоимость
900 ₽
Файлы работы   
1
Каждая работа проверяется на плагиат, на момент публикации уникальность составляет не менее 40% по системе проверки eTXT.
docx
93информатика 4
2.8 Мбайт 900 ₽
Описание

Объектом исследования является аффинитивный анализ данных, предметом исследования – разработка способа построения классификатора данных на основе результатов аффинитивного анализа.

Цель исследования – разработка технологии построения классификатора данных на основе алгоритмов аффинивного анализа данных (на примере алгоритма Apriori).

Оглавление

Введение.......................................................................................................... 3

1  Анализ перспектив развития алгоритмов машинного обучения................... 6

1.1  Анализ тенденций в области машинного обучения................................ 6

1.2  Построение классификатора для анализа изображений....................... 17

1.3  Перспективы развития алгоритмов машинного обучения.................... 21

2  Разработка технологии синтеза классификаторов на основе аффинитивного анализа данных............................................................................................................ 26

2.1  Математическая модель алгоритма Apriori.......................................... 26

2.2  Синтез классификатора на основе модифицирования ассоциативных правил     34

3  Проведение тестирования предложенных подходов................................... 40

3.1  Программная реализация предложенных подходов............................. 40

3.2  Реализация интерфейса......................................................................... 60

3.3  Проведение вычислительных экспериментов....................................... 67

Заключение.................................................................................................... 73

Список используемой литературы................................................................. 75

Список литературы

1.                Арзаманов, Н.А. Технология машинного обучения и ее практическое применение / Н.А. Арзамазов, Н.И. Ематина // Исследование различных направлений современной науки – материалы XXI Международной научно-практической конференции. В 2-х частях. 24 апреля 2017. – Научный центр "Олимп" (Астрахань), 2017. – с. 7-10. – Текст : непосредственный.

2.                Аусабаев, Д.М. Использование машинного обучения в поддержке принятия решений / Д.М. Аусабаев, О.П. Волобуев // Прикладная математика и информатика: современные исследования в области естественных и технических наук – материалы III научно-практической всероссийской конференции (школы-семинара) молодых ученых. Тольятти, 24–25 апреля 2017 года. – Издатель Качалин Александр Васильевич, 2017. – с. 43-47. – Текст : непосредственный.

3.                Власов, А.В. Машинное обучение применительно к задаче классификации семян зерновых культур в видеопотоке / А.В. Власов, А.С. Федеев // Молодежь и современные информационные технологии – сборник трудов XIV Международной научно-практической конференции студентов, аспирантов и молодых учёных, 07–11 ноября 2016. – Национальный исследовательский Томский политехнический университет (Томск), 2016. – с. 133-135. – Текст : непосредственный.

4.                Жуков, Д.А. Формирование контрольных выборок при технической диагностике объекта с применением машинного обучения / Д.А. Жуков, А.С. Хорева, Ю.Е. Кувайскова, В.Н. Клячкин // Математические методы и модели: теория, приложения и роль в образовании – международная научно-техническая конференция : сборник научных трудов, 28–30 апреля 2016 года. – Ульяновский государственный технический университет (Ульяновск), 2016. – с. 44-48. – Текст : непосредственный.


5.                Иванников Ю.Ю. Применение методов машинного обучения для выявления бот-трафика среди запросов к веб-приложению / Ю.Ю. Иванников, Е.Ю. Митрофанова // Сборник студенческих научных работ факультета компьютерных наук ВГУ, Факультет компьютерных наук, 2017. – ФГБОУ ВО «Воронежский государственный университет», 2017. – с. 119-

123.  – Текст : непосредственный.

6.                Клячин В.Н. Использование агрегированных классификаторов при технической диагностике на базе машинного обучения / В.Н. Клячин, Ю.Е. Кувайскова, Д.А. Жуков // Информационные технологии и нанотехнологии (ИТНТ-2017) – сборник трудов III международной конференции и молодежной школы. Самарский национальный исследовательский университет имени академика С.П. Королева. 2017. – Предприятие "Новая техника" (Самара), 2017. – с. 1770-1773. – Текст : непосредственный.

Вам подходит эта работа?
Похожие работы
Другие работы автора
Темы журнала
Показать ещё
Прямой эфир