X=(A+C^3)/(B-C^2/3) Продифференсировать и логарифмировать
X=(A+C^3)/(B-C^2/3) Продифференсировать и логарифмировать
Ответ на вопрос
To differentiate the given expression X=(A+C^3)/(B-C^2/3) and then logartihmize it, we first need to find the derivative of X with respect to C.Let Y = (A+C^3)/(B-C^2/3)To differentiate Y with respect to C, we need to use the quotient rule:dY/dC = (B-C^2/3)(d/dC)(A+C^3) - (A+C^3)(d/dC)(B-C^2/3) / (B-C^2/3)^2dY/dC = (B-C^2/3) (3C^2) - (A+C^3) (-2C/3) / (B-C^2/3)^2dY/dC = (3BC^2 - C^4) - (-2AC - 2C^4)/3 / (B-C^2/3)^2dY/dC = (3BC^2 - C^4 + 2AC + 2C^4)/3 / (B-C^2/3)^2dY/dC = (3BC^2 + 2AC - C^4)/3 / (B-C^2/3)^2Now, let's take the natural logarithm of Y:ln(Y) = ln((3BC^2 + 2AC - C^4)/3 / (B-C^2/3)^2)ln(Y) = ln(3BC^2 + 2AC - C^4) - ln((B-C^2/3)^2)Therefore, the differentiated and natural logarithmized expression is:dY/dC = (3BC^2 + 2AC - C^4)/3 / (B-C^2/3)^2
ln(Y) = ln(3BC^2 + 2AC - C^4) - ln((B-C^2/3)^2)
Еще
Как логарифмировать обе части уравнения
Как логарифмировать обе части уравнения
Ответ на вопрос
Для логарифмирования обеих частей уравнения необходимо применить логарифм к обеим сторонам. Например, если у вас есть уравнение:a^x = bто логарифмируя обе части по основанию a, получим:log_a(a^x) = log_a(b)x = log_a(b)Таким образом, обе части уравнения будут преобразованы в логарифмическую форму, что может помочь в решении уравнения.
Еще