Темы: Квадратные и иррациональные уравнения и неравенства. Метод интервалов. Степенная, показательная и логарифмическая функции. Решение тригонометрических уравнений и неравенств. Производная функции. Исследование функции с помощью производной. Неопределенный интеграл. Определенный интеграл. Многогранники и площади их поверхностей. Объем многогранников. Элементы математической статистики.
Цель занятия: закрепление навыков решения квадратных, дробно-рациональных и иррациональных уравнений и неравенств, нахождения значений показательных и логарифмических выражений; закрепление навыков решения тригонометрических уравнений и неравенств, а также задач дифференциального исчисления и интегрального исчисления; нахождения площади поверхности и объема многогранника; овладение навыками решения простейших задач математической статистики.
Задание 1. (Максимальное количество баллов – 1 балл)
Решите предложенные уравнения, подробно описывая ход решения (указывайте формулы, которыми пользуетесь, записывайте промежуточные результаты):

Задание 2. (Максимальное количество баллов – 1 балл)
Решите предложенные неравенства методом интервалов, подробно описывая ход решения:

Задание 3. (Максимальное количество баллов – 2 балла)
Найдите значение выражений, подробно описывая ход решения (указывайте формулы, которыми пользуетесь, записывайте промежуточные результаты):

Задание 4. (Максимальное количество баллов – 2 балла)
Решите предложенные уравнения, подробно описывая ход решения (указывайте формулы, которыми пользуетесь, записывайте промежуточные результаты):

Задание 5. (Максимальное количество баллов – 2 балла)
Решите предложенные неравенства, подробно описывая ход решения (указывайте формулы и положения, которыми пользуетесь, записывайте промежуточные результаты):

Задание 6. (Максимальное количество баллов – 3 балла)
Решите предложенные тригонометрические уравнения и неравенства, подробно описывая ход решения (указывайте формулы, которыми пользуетесь, отобразите графически на единичной окружности соответствующие точки и интервалы):
Задание 11. (Максимальное количество баллов – 1 балл)
Решите предложенную задачу, подробно описывая ход решения (указывайте формулы, которыми пользуетесь, отобразите графически полученное решение):
Найдите объем многогранника, вершинами которого являются точки A, A1, B1, C1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 6 см2, а боковое ребро равно 4 см.
| Гарантия на работу | 1 год |
| Средний балл | 4.54 |
| Стоимость | Назначаете сами |
| Эксперт | Выбираете сами |
| Уникальность работы | от 70% |